Foundations of Machine Learning Al2000 and Al5000

FoML-05 Maximum A Posteriori Fully Bayesian treatment

> <u>Dr. Konda Reddy Mopuri</u> Department of AI, IIT Hyderabad July-Nov 2025

So far in FoML

- What is ML and the learning paradigms
- Probability refresher
- Maximum Likelihood Principle

Given - Dataset of N independent observations D

Given - Dataset of N independent observations D

ML estimate - w that maximizes the data likelihood

$$\mathbf{w}_{ML} = \underset{w}{\text{arg wex}} P(D|w)$$

• Given - Dataset of N independent observations D = $\left\{ \begin{array}{c} u_1 & u_2 \end{array} \right\}$

• MAP estimate - choose most probable w given data

Given - Dataset of N independent observations D

MAP estimate - choose most probable w given data

$$\mathbf{w}_{MAP} = \frac{\mathbf{w}_{MAP}}{\mathbf{w}} + \frac{\mathbf{w}_{MAP}}{\mathbf{w}}$$

• Given data D $D = \{(x_1, t_1), (x_2, t_2), \dots (x_N, t_N)\} = \{\mathbf{x}, \mathbf{t}\}$

Given data D

$$D = \{(x_1, t_1), (x_2, t_2), \dots (x_N, t_N)\} = \{\mathbf{x}, \mathbf{t}\}$$

Model

$$p(t|x,\mathbf{w},\beta) = \mathcal{N}(t|y(x,\mathbf{w}),\beta^{-1}) = \sqrt{\frac{\beta}{2}} e^{\frac{1}{2}(t-y|x,\omega)}$$

Given data D

$$D = \{(x_1, t_1), (x_2, t_2), \dots (x_N, t_N)\} = \{\mathbf{x}, \mathbf{t}\}$$

ullet Model $p(t|x,\mathbf{w},eta) = \mathcal{N}(t|y(x,\mathbf{w}),eta^{-1})$

$$\mathbf{w}_{MAP} = \underset{\mathbf{w}}{\operatorname{arg\,max}} p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \beta)$$

Given data D

$$D = \{(x_1, t_1), (x_2, t_2), \dots (x_N, t_N)\} = \{\mathbf{x}, \mathbf{t}\}$$

Model

$$p(t|x, \mathbf{w}, \beta) = \mathcal{N}(t|y(x, \mathbf{w}), \beta^{-1})$$

$$\mathbf{w}_{MAP} = \underset{\mathbf{w}}{\operatorname{arg\,max}} p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \beta)$$

Given a prior $\mathcal{P}(\omega \bowtie)$ the posterior distribution becomes

$$p(\mathbf{w}|\mathbf{x},\mathbf{t},\beta,\alpha) = \frac{P(\mathsf{t}|\mathbf{w},\mathsf{x},\beta) P(\mathbf{w}|\mathbf{x})}{P(\mathsf{t}|\mathbf{x},\beta,\alpha)}$$

P(HX,N,B) P(W/A)

DiL Data-driven Intelligence & Learning Lab

MAP estimate - for convenience apply log

$$\mathbf{w}_{MAP} = \underset{\text{in dependent } g}{\text{argmax}} \left[\log p[t] \times_{[X,W,P]} + \log [w]d) - \log p[t] \times_{[X,K,d]} \right]$$

 $w_{i} \sim N(0, \vec{a})$ $i = \{1, 2...m\}$

ullet Assuming Gaussian Prior and independence on parameters $\mathbf{w} \in \mathbb{R}^{\mathbf{M}}$

$$p(\mathbf{w}|\alpha) = \prod_{i=1}^{M} \mathcal{N}(\mathbf{w}_{i}|\mathbf{0}, \alpha^{-1}) = \prod_{i=1}^{M} \underbrace{\frac{d}{2\pi}}_{i=1} e^{-\frac{d}{2}} \underbrace{\omega_{i}^{2}}_{i=1} = \underbrace{\frac{d}{2\pi}}_{i=1} \underbrace{\frac{d}{2\pi}}_{i=1}$$

भारतीय प्रौद्योगिकी संस्थान हैदराबाद

Indian Institute of Technology Hyderabad

 $\mathbf{w_{MAP}} = \arg\min - \log \mathbf{p}(\mathbf{w}|\mathbf{x}, \mathbf{t}, \beta, \alpha) = \arg\min - \log \mathbf{p}(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) - \log \mathbf{p}(\mathbf{w}|\alpha)$ = organin - log P(Hx,w,B) - log ((2) M2 - ZWTW) argmin $-\log P(t|x,\omega,B) - \frac{m}{2} \log \frac{1}{2\pi} + \frac{1}{2} \omega^{T} \omega$ $\lim_{i=1}^{R} \frac{-B}{2\pi} \left[t - y(x_i,\omega) \right] \qquad \lim_{i=1}^{R} \lim_{i=1}^{R} \frac{1}{2\pi} \left[t_i - y(x_i,\omega) \right] + \frac{1}{2\pi} \omega^{T} \omega$ $\lim_{i=1}^{R} \frac{1}{2\pi} \left[t_i - y(x_i,\omega) \right] + \frac{1}{2\pi} \omega^{T} \omega$ $\lim_{i=1}^{R} \frac{1}{2\pi} \left[t_i - y(x_i,\omega) \right] + \frac{1}{2\pi} \omega^{T} \omega$ భారతీయ సాంకేతిక విజ్జాన సంస్థ హైదరాబాద్

Data-driven Intelligence
& Learning Lab

Predictive distribution

Bayesian Prediction

So far

- Our estimates for w have been point estimates
 - ML and MAP

So far

- Our estimates for w have been point estimates
 - o ML and MAP
 - o Regarded as frequentist because they discard 'uncertainty' about the w

 An approach that relies on consistent application of sum and product rules of probability at all levels of modeling

• Given a prior belief $p(\mathbf{w}|\alpha)$ over w, and data D

- Given a prior belief $p(\mathbf{w}|\alpha)$ over w, and data D
- We are interested in the posterior

$$p(\mathbf{w}|\mathbf{D}) =$$

• The predictive distribution becomes

$$p(x'|D) =$$

• Curve fitting example

- Curve fitting example
- Given training data (x, t)

- Curve fitting example
- Given training data (x, t) and a test sample x

- Curve fitting example
- Given training data (x, t) and a test sample x
- Goal predict the value of t

- Curve fitting example
- Given training data (x, t) and a test sample x
- Goal predict the value of t

We wish to evaluate the predictive distribution $p(t|x,\mathbf{x},\mathbf{t})$

$$p(t|x, \mathbf{x}, \mathbf{t}) = \int p(t|x, \mathbf{w}) p(\mathbf{w}|\mathbf{x}, \mathbf{t}) d\mathbf{w}.$$

- Advantages
 - Inclusion of the prior knowledge
 - o Represents uncertainty in t' due to the target noise and uncertainty over w

- Advantages
 - Inclusion of the prior knowledge
 - Represents uncertainty in t' due to the target noise and uncertainty over w
- Disadvantages
 - Posterior is hard to compute analytically
 - Prior is often a mathematical convenience

Rough work

Next Linear Models - Regression

